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a b s t r a c t

This study analyzed the nonlinear vibration of an axially moving beam subject to

periodic lateral force excitations. Attention is paid to the fundamental and subharmonic

resonances, since the excitation frequency is close to the first two natural frequencies of

the system. The incremental harmonic balance (IHB) method was used to evaluate the

of the periodic solutions for given parameters were determined by the multivariable

Floquet theory using Hsu’s method. The solutions obtained from the IHB method agreed

very well with those obtained from numerical integration. Furthermore, numerical

examples are given to illustrate the effects of the three-to-one internal resonance on the

response of the system.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Axially moving systems are widely used in engineering applications for conveying materials or in power transmissions,
such as magnetic tapes, power transmission belts and band saw blades. Such systems, which can be modelled as either
string-like or beam-like systems, have been investigated in the past by many researchers [1,2]. Wickert and Mote Jr. [3]
used an eigenfunction method to analyze the response of axially moving strings and beams subjected to arbitrary
excitation and initial conditions. Wickert [4] analyzed the nonlinear vibration and bifurcation of axially moving beams
through the Krylov–Bogoliubov–Mitropolsky asymptotic method. Pellicano and Vestroni [5,6] studied the nonlinear
dynamics of a simply supported axially moving beam using a high-dimensional discrete model obtained from the Galerkin
procedure. These authors also investigated the effect of pulley eccentricity on the vibration of an axially moving belt by
experimental and theoretical analysis [7]. In many studies, the method of multiple scales is applied to analyze the
nonlinear vibration of axially moving strings or beams. Öz et al. [8] and Öz [9] applied the method of multiple scales to
study the nonlinear vibrations and stability of axially moving beams and tensioned pipes conveying fluid with time-
dependent velocity. Chen and Yang [10,11] used the method of multiple scales to calculate the steady-state response of
axially moving viscoelastic beams with time-dependent velocity and investigated stability in transverse parametric
vibration. Recently, Sze et al. [12] investigated the forced response of an axially moving beam with internal resonance
using the IHB method, which is an efficient and reliable method for treating the vibration of strong nonlinear systems
[13–15].

Internal resonance has been found in many engineering problems in which the natural frequencies of the system are
commensurable. When internal resonance occurs, the two vibration modes may react with each other, and energy may be
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transferred between the two resonant modes. Chin and Nayfeh [16] investigated three-to-one internal resonance in
hinged–clamped beams subject to a primary excitation in either its first or its second mode. They used the method of
multiple scales to directly solve the governing nonlinear partial differential equation, a shooting technique to calculate
limit cycles of the modulation equations and the Floquet theory to ascertain their stability. Abe et al. [17] also used the
method of multiple scales to analyze internal resonance between two symmetric mode responses of simply supported
rectangular laminated plates. They reported that the two-mode response near the primary resonance of the second mode
loses its stability via a Hopf bifurcation, giving rise to a quasi-periodic response. The two modes of the axially moving beam
needed to be studied simultaneously in order to realise the dynamic behaviour of the system. In this regard, Riedel and Tan
[18] studied the coupled and forced responses of an axially moving strip with internal resonance when the force frequency
was near the first natural frequency. The method of multiple scales was used to perform the perturbation analysis and to
determine the frequency-response numerically for both low and high speed conditions. Suweken and Van Horssen [19]
investigated complicated dynamical behaviour for sum-type and difference-type internal resonances on the transverse
vibrations of a conveyor belt with time-varying velocity; the stability properties of the belt system were demonstrated. Sze
et al. [12] also studied the nonlinear vibration of the system with the IHB method. They observed that the internal
resonances are rich and complicated.

This paper is focused on the stability and bifurcation of periodic solutions of the axially moving beam with internal
resonance when the excitation frequency, O, is near the first two natural frequencies, o1 and o2. Two nonlinear ordinary
differential equations can be derived through Hamilton’s Principle and discretised through Galerkin’s method. Then, the
IHB method is employed to solve the equations to obtain the frequency response curves of the axially moving beam. Based
on the Floquet theorem, the stability and bifurcation of the periodic solutions are determined by observing the movement
of the eigenvalues of the transition matrix in the complex plane. The transition matrix can be evaluated by using Hsu’s
method [20–22]. The periodic, quasi-periodic and chaotic motions are investigated by numerical integration and
represented in terms of the time histories, phase plane plots, Poincaré sections, Fourier spectra and Lyapunov exponents.
Some resonance curves are presented and discussed.
2. System model and associated equations of motion

Fig. 1 shows a beam passing through two simple supports at constant transport velocity V with a transverse force. The
properties of the beam include its cross-sectional area, A, mass density, r and flexural rigidity, EI. The beam is tensioned by
force, P, and it oscillates in the X–Z-plane with the transverse displacement denoted by W(X, T), where T denotes time.
Furthermore, the beam is excited by Q(X, T), the vertical dynamic load. From the previous studies, the natural frequencies
of the transverse vibration differ greatly from that of the longitudinal vibration [4], and the coupling effect between the
two vibrations is weak. Hence, in this study, the effects of longitudinal vibration in the moving beam are neglected.

The governing equation of the axially moving beam subject to a transverse harmonic excitation can be expressed
non-dimensionally as [4]

w,ttþ2vw,xtþðv
2�1Þw,xx�

3
2v2

1w,2x w,xxþv2
f w,xxxx ¼ F cosXt (1)

subject to the boundary conditions

wð0,tÞ ¼wð1,tÞ ¼ 0, w,xxð0,tÞ ¼w,xxð1,tÞ ¼ 0 (2)

in which w¼W=L, x¼ X=L, t¼ T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P=rAL2

p
.

v¼ V=
ffiffiffiffiffiffiffiffiffiffiffiffi
P=rA

p
, v1 ¼

ffiffiffiffiffiffiffiffiffiffiffi
EA=P

p
, vf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=PL2

q
and F ¼QL=P

where w(x, t) is the non-dimensional lateral deflection, v is the non-dimensional constant transport velocity, v1 is the non-
dimensional longitudinal stiffness parameter, vf is the non-dimensional flexural stiffness parameter, F is the non-
dimensional lateral force and O is the non-dimensional excitation frequency whose physical counterpart is X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P=rAL2

p
.

Fig. 1. Schematic diagram for an axially moving beam.
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The following separable solutions, in terms of admissible functions and the dynamic load F(x, t), are assumed to be

wðx,tÞ ¼
Xn

j ¼ 1

qjðtÞsinðjpxÞ (3)

Fðx,tÞ ¼
Xn

j ¼ 1

fj sinðjpxÞ (4)

By substituting Eqs. (3) and (4) into Eq. (1), multiplying all the terms by sin(ipx) and integrating the resulting equation
from x=0 to 1, the following second-order ordinary differential equations can be obtained:

Xn

j ¼ 1

Mij €qjþ
Xn

j ¼ 1

Gij _qjþ
Xn

j ¼ 1

Kijqjþ
Xn

j ¼ 1

Xn

k ¼ 1

Xn

l ¼ 1

Kijklqjqkql ¼ fj cosXt, i¼ 1,2,. . .,n (5)

where _qj ¼ dqj=dt and €qj ¼ d2qj=dt2. Moreover, Mij, Gij, Kij and Kijkl are the mass, gyroscopic, linear stiffness and cubic
stiffness coefficients in the discretized equations, respectively.

Eq. (5) can then be rewritten in matrix form as

M €qþG _qþKqþK3ðqÞq¼ FcosXt (6)

where q¼ ½q1, q2,. . .,qn�
T , M, Gand Kare the mass, gyroscopic and linear stiffness matrices, respectively, K3(q) is the cubic

nonlinear stiffness matrix and F¼ ½f1,f2,. . .,fn�
T is the amplitude matrix of the disturbed harmonic excitation.

By introducing the new non-dimensional time variable, t

t¼Xt (7)

Eq. (6) becomes

X2Mq00 þXGquþKqþK3ðqÞq¼ Fcost (8)

in which the prime denotes differentiation with respect to t.

3. IHB method for the axially moving beam

Among the methods of solving ordinary differential equations, the IHB method is an efficient and reliable method for
treating strongly nonlinear vibrational systems. It was developed and successfully applied to the analysis of periodic
nonlinear structural vibrations and related problems.

The first step of the IHB method is an incremental method (Newton–Raphson procedure) to linearise the incremental
differential equation, Eq. (8). Let qj0 and o0 denote a state of vibration; the neighbouring state can be express by adding the
corresponding increments as follows:

qj ¼ qj0þDqj, j¼ 1,2,. . .,n, X¼o0þDo (9)

Substituting Eq. (9) into Eq. (8) and neglecting the higher-order terms yields the following incremental equation in matrix
form:

o2
0MDq00 þo0GDquþKDqþ3K3Dq¼ R�ð2o0Mq000þGqu0ÞDo (10)

R¼ Fcost�ðo2
0Mq000þo0Gqu0þKq0þK3q0Þ (11)

in which

q0 ¼ ½q10,q20,. . .,qn0�
T , Dq0 ¼ ½Dq1,Dq2,. . .,Dqn�

T

and R is a corrective vector which goes to zero when the numerical solution is exact.
The second step of the IHB method is the harmonic balance procedure. For a periodic excitation force and if Eq. (8) is

odd, a periodic solution can be obtained by expanding qj0 in a truncated finite Fourier series and using the Galerkin
procedure. Thus, we can assume

qj0 ¼
Xnc

k ¼ 1

ajk cosð2k�1Þtþ
Xns

k ¼ 1

bjk sinð2k�1Þt¼ CAj (12)

where

C¼ ½cost,cos3t. . .,cosð2nc�1Þt,sint, sin3t,. . .,sinð2ns�1Þt�

Aj ¼ ½aj1,aj2,. . .,ajnc
,bj1,bj2,. . .,bjns

�T

and ajk, bjk are the Fourier coefficients, and nc, ns are the numbers of the cosine and sine harmonic terms, respectively.
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The increment Dqj can also be expanded in a Fourier series as shown below:

Dqj0 ¼
Xnc

k ¼ 1

Dajk cosð2k�1Þtþ
Xns

k ¼ 1

Dbjk sinð2k�1Þt¼ CDAj (13)

where DAj ¼ ½Daj1, Daj2, . . ., Daj nc
, Dbj1, Dbj2,. . ., Dbj ns

�T . Hence, the vectors of the unknown and their increments can be
expressed, respectively, using the Fourier coefficient vector, A, and its increment, DA, as

q0 ¼ SA, Dq0 ¼ SDA (14)

Here, S¼ diagðC,C,. . .,CÞ, A¼ ½A1,A2,. . .,An�
T and DA¼ ½DA1,DA2,. . .,DAn�

T .
Substituting Eq. (14) into Eq. (10) and applying the Galerkin procedure in order to balance the harmonics yieldsZ 2p

0
dðDqÞT ½o2

0MDq00 þo0GDquþKDqþ3K3Dq�dt

¼

Z 2p

0
dðDqÞT ½R�ð2o0Mq000þGqu0ÞDo�dt (15)

One can easily obtain a set of linear equations in terms of DA and Do:

KDA¼R�RmcDo (16)

where

K¼
Z 2p

0
ST
½o2

0MS00 þo0GSuþðKþ3K3ÞS�dt

R¼
Z 2p

0
ST
½Fcost�o2

0MS00�o0GSu�ðKþK3ÞS�dtA

Rmc ¼

Z 2p

0
ST
ð2o0MS00 þGSuÞdtA

The solution process begins with a guessed solution. The nonlinear frequency-response curve is then solved point-by-
point by incrementing the frequency O, or incrementing components of the coefficient vector, A. The Newton–Raphson
iterative method can be employed, and the solution of the differential equation can be found.

4. Stability analysis

When the steady-state solution of the axially moving system is obtained, the stability of the given solution can be
investigated by adding a small perturbation, Dq, onto q0,

q¼ q0þDq (17)

Substituting Eq. (17) into Eq. (8), noting that q0 satisfies Eq. (8), and neglecting the nonlinear incremental terms, one can
obtain

X2MDq00 þXGDquþðKþ3K3ÞDq¼ 0 (18)

Eq. (18) is the perturbed equation: i.e., perturbed from the known solution q0. The stability of the steady-state solutions
then corresponds to the stability of the solutions of Eq. (18), which is a linear ordinary differential equation with periodic
coefficients in K3. These stability characteristics can be studied using the multivariable Floquet theory.

Furthermore, Eq. (18) can be rewritten in the state space form

Xu¼Q ðtÞX (19)

where Q ¼
0 I

Q 21 �ð1=XÞM�1G

" #
, X¼ ½Dq,Dqu�T and Q 21 ¼�1=X2 M�1

ðKþ3K3Þ. Since each component of q0 is a periodic

function of t with a period T=2p, each element of Q21 is also a periodic function with the same period T.
For Eq. (19), there exists a fundamental set of solutions

yk ¼ ½y1k, y2k, . . ., yNk�
T , k¼ 1, 2, . . ., N (20)

where N=2n. This fundamental set can be expressed in a matrix called a fundamental matrix solution, i.e.,

Y¼

y11 y12 � � � y1N

y21 y22 � � � y2N

^ ^ � � � ^

yN1 yN2 � � � yNN

2
66664

3
77775 (21)

Y satisfies the matrix equation

Yu¼Q ðtÞY (22)
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where Q(t+T)=Q(t) is the periodic matrix and Y(t+T) is a fundamental matrix solution. Therefore, Y can be expressed by

YðtþTÞ ¼ PYðtÞ (23)

where P is a non-singular constant matrix called the transition matrix.
The Floquet theory states that the stability criteria for the system are related to the eigenvalues li of the matrix P, or the

real of part of the characteristic exponents. The solution of Eq. (19) approaches zero as t-N if all the moduli of the
eigenvalues of P are less than 1. Otherwise, the motion is unbounded, and the solution is unstable.

Among the various methods of approximating the transition matrix, Friedmann et al. [20] summarised that the most efficient
procedures is the one developed by Hsu [21,22] and Hsu and Cheng [23]. The method consists of evaluating the transition matrix
by dividing a period into a number of equal parts and considering the equations over each interval to be a set of equations with
constant coefficients. Friedmann summarised this method and gave a clear and concise formulation. In this paper, only the final
formula is presented. Suppose each period, T, is divided into Nk intervals denoted by tk, and the kth interval is denoted by
Dk=tk�tk�1. In the kth interval, the periodic coefficient matrix, Q(t), is replaced by a constant matrix, Qk, defined by

Q k ¼
1

Dk

Z tk

tk�1

Q ðzÞdz (24)

Finally, the transition matrix is given in the form

P¼ YðTÞ ¼
YNk

i ¼ 1

Iþ
XNj

j ¼ 1

ðDiQ iÞ
j

j!

2
4

3
5 (25)

where Nj is the number of the Taylor series.
For numerical evaluation of Eqs. (24) and (25), the algorithms given in Cheung et al. [24] are recommended.

5. Results and discussion

When considering the vibrations of two transverse degrees of freedom, i.e., n=2, and introducing model damping terms
(m11 and m22) for the forced responses of the system, Eq. (6) becomes

€q1þm11
_q1�m12

_q2þk11q1þk12q1q2
2þk13q3

1 ¼ f1 cosXt

€q2þm21
_q1þm22

_q2þk21q2þk22q2q2
1þk23q3

2 ¼ f2 cosXt (26)

where

m12 ¼ m21 ¼ 16v=3, k11 ¼ ðv
2
f p

2�v2þ1Þp2, k12 ¼ 3v2
1p

4, k13 ¼ k12=8

k21 ¼ 4ð4v2
f p

2�v2þ1Þp2, k22 ¼ k12, k23 ¼ 2k12

Here, O is the excitation frequency. It should be noted that m12 and m21 are the gyroscopic coefficients that provide an
internal damping effect to the system, and m11 and m22 arise from external viscous damping.

Riedel and Tan [18] investigated the internal resonance response of an axially moving strip. Following their chosen
system parameters, which are typical for a belt-drive system,

v2
1 ¼ 1124, v2

f ¼ 0:03 and v¼ 0:6:

This set of parameters will be employed throughout this section. From these parameters, one can calculate

m12 ¼ m21 ¼ 3:2, k11 ¼ 9:23882, k12 ¼ 3372p4, k13 ¼ 421:5p4

k21 ¼ 72:0226, k22 ¼ 3372p4, k23 ¼ 6744p4

By dropping the nonlinear terms, the linear natural frequencies o1 and o2 can be solved from the following equation:

o4�ðk11þk21þm12m21Þo2þk11k21 ¼ 0 (27)

yielding o1=2.82232, o2=9.13980. For a cubic nonlinearity system, internal resonance usually occurs between two
transverse modes when the natural frequency is o2E3o1.

5.1. The case of O near o1

In this case, when the forcing frequency, O, is near the first natural frequency, o1, f2=0 should be set in Eq. (26). In the
solution process, it may be assumed that nc=ns=8 in Eq. (13) and q1 , q2 in Eq. (12) can be expressed as

q1 ¼ A11 cosðtþf11ÞþA12 cosð3tþf12Þþ � � �

q2 ¼ A21 cosðtþf21ÞþA22 cosð3tþf22Þþ � � � (28)
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where

Ajk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

jkþb2
jk

q
, fjk ¼ tan�1ð�bjk=ajkÞ, j¼ 1,2, k¼ 1,2,. . .,8

Fig. 2 shows the frequency-response curves of the axially moving beam with f1=0.0055 and m11=m22=0.04 as the
excitation frequency ratio O/o1 varies over the range 0.6–2.0. The ordinate is the non-dimensional amplitude of each
mode, and the abscissa is O/o1, which corresponds to the non-dimensional excitation frequency ratio. The response curves
exhibit hardening spring type behaviours. Fig. 2(a) shows the X=o1 � A11 curve and (b) shows the X=o1 � A22 curve,
where A11 and A22, defined in Eq. (28), are the amplitudes of the first harmonic terms of the first variable, q1, and the
second harmonic terms of the second variable, q2, respectively. In these figures, the solid and dashed lines represent the
stable and unstable solutions evaluated from the IHB method, respectively. The small circles represent the solutions
obtained from the numerical integration of the perturbation in Eq. (26) using the fourth-order Runge–Kutta method. It can
be observed that the results from the IHB method and numerical integration agree well with each other. Figs. 2(c) and (d)
show detailed resonant regions obtained by enlarging Figs. 2(a) and (b), respectively.

In Fig. 2, as O/o1 increases from a small value of 0.6, the amplitude A11 rises first through point ‘A’, and it then drops
slowly at the local maximum ‘B’ (X=o1 ¼ 1:2123) until point ‘C’ (X=o1 ¼ 1:2260). Alternatively, the amplitude A22 rises all
the way over the same frequency range. From points ‘B’ to ‘C’, the system exhibits energy transition from the first response
mode to the second response mode due to the internal resonance. At point ‘C’, a saddle-node bifurcation occurs resulting in
the response becoming unstable, which is evidenced by one pair of complex conjugate Floquet multiplies as shown in
Table 1 leaving the unit circle away from the real axis. For decreasing O/o1 beyond point ‘C’, the system response is
unstable until another saddle-node bifurcation point ‘D’ (X=o1 ¼ 1:1664). In the small stable response region from point
‘D’ to point ‘E’ (X=o1 ¼ 1:1678), the amplitude A11 rises while A22 drops with increasing O/o1 until A22EA11. In this region,
energy is transmitted back from the second response mode to the first response mode. In between points ‘D’ and ‘E’, there
are three stable responses and two unstable responses. Figs. 3(a, b) show the phase planes of the three stable period
solutions and two unstable solutions obtained (one of the unstable solution cannot be seen in the figure because it is very
close to one of the stable solutions) from the IHB method with an excitation frequency ratio of X=o1 ¼ 1:1665. The cross
marks ‘� ’ represent the solutions obtained from numerical integration. Again, the solutions from the IHB method and
numerical integration show very good agreement. By increasing O/o1, the system response loses its stability via a Hopf
bifurcation at point ‘E’ in Fig. 2(d), which is indicated by one pair of complex conjugate Floquet multiplies as shown in
Table 2 crossing the unit circle, and retains its stability via a reverse Hopf bifurcation at point ‘F’ (X=o1 ¼ 1:2380). Then,
A
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Fig. 2. Response curves as o2E3o1, OEo1 with f1 ¼ 0:0055, m11 ¼ m22 ¼ 0:04: (a)X=o1 � A11; (b) X=o1 � A22; (c) enlargement of the area highlighted

in (a) and (d) enlargement of the area highlighted in (b). IHB stable, IHB unstable; numerical integration (NI).
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the system response encounters a saddle-node bifurcation at point ‘G’ (X=o1 ¼ 1:8610), resulting in a jump of the response
to the smaller stable solution. By decreasing O/o1 from 2.0 in the smaller stable solution, the system response loses its
stability via a saddle-node bifurcation at point ‘H’ (X=o1 ¼ 1:0260), resulting in a jump of the response to the other stable
solution.

It is noted that there exists quasi-periodic or chaotic vibration as O/o1 decreases from the Hopf bifurcation point ‘F’ to
1.1952. Figs. 4 and 5 show the time histories, Fourier spectra, phase plane diagrams and Poincaré sections for the excitation
frequency ratios at two points X=o1 ¼ 1:2333 and X=o1 ¼ 1:2066, which are quasi-periodic and chaotic vibrations,
respectively. In Figs. 4 and 5(a,b), the results show that energy is continuously being exchanged between the two modes,
resulting in a beating phenomenon. For X=o1 ¼ 1:2333, the Lyanpunov exponents are 1.425810-4, �0.02047, �0.02982,
�0.02993 and the largest Lyapunov exponent is a very small value, which can be taken to be zero for a quasi-periodic
vibration. For X=o1 ¼ 1:2066, the Lyanpunov exponents are 0.00298, 8.7382510-5, �0.03935, �0.04378 and the largest
Lyapunov exponent is positive, which confirms its chaotic nature. As the excitation frequency ratio decreases slightly close
to 1.1952, the system response moves far away from the quasi-periodic or chaotic response and jumps to a stable periodic
response. Fig. 6 shows the time histories of q1 and q2 at X=o1 ¼ 1:1951. It can be seen that the two modes, q1 and q2, jump
from a quasi-periodic vibration to a stable periodic vibration after a finite time.

A quasi-periodic response bifurcates into a chaotic response when O/o1 increases from the other Hopf bifurcation point
‘E’ to 1.16911. The stable response loses its stability via the Hopf bifurcation point ‘E’ and becomes a quasi-periodic
vibration, as shown in Fig. 7(a). Then, the quasi-periodic vibration undergoes a sequence of period doubling bifurcations, as
shown in Fig. 7(b) and (c), eventually resulting in chaotic vibration. The chaotic attractor is observed in Fig. 7(d), and the
Lyapunov exponents computed for these parameter values are 0.00781, 4.73918�10�5, �0.04171 and �0.04618. The
largest Lyapunov exponent is positive, which confirms its chaotic nature. As the excitation frequency ratio increases
slightly near the boundary crises, the system response moves far away from the chaotic attractor and jumps to a stable
periodic response. Fig. 8 shows the time histories of q1 and q2 at X=o1 ¼ 1:16967. The amplitude of the first mode, q1, rises
for a finite period of time and jumps to a stable periodic response, whereas the amplitude of the second mode, q2, drops
and jumps to a stable periodic response.
Table 1
Floquet multiplies with force frequency O near point ‘C’.

Frequency, O/o1 l1, l2 9l19=9l29 l3, l4 9l39, 9l49

1.22557 0.8038370.54730i 0.97246 0.9494370.11403i 0.95626, 0.95626

1.22595 0.8159270.53001i 0.97295 0.9534570.06682i 0.95579, 0.95579

Point ‘C’ 1.22601 0.8255970.51550i 0.97331 1.01303, 0.90112 1.01303, 0.90112

1.22554 0.8422770.48881i 0.97383 1.09885, 0.82980 1.09885, 0.82980

1.22219 0.8689370.44011i 0.97403 1.20373, 0.75691 1.20373, 0.75691

-0.010
-0.05

0

0.05

dq
1/d
t

q1

-0.05

0

0.05

dq
2/d
t

q2

-0.005 0 0.005 -0.005 0 0.0050.010

Fig. 3. Multiple responses at X=o1 ¼ 1:1665.

Table 2
Floquet multiplies with force frequency O near point ‘E’.

Frequency, O/o1 l1, l2 9l19=9l29 l3, l4 9l39=9l49

1.16761 0.9052870.23006i 0.93406 0.9664170.22378i 0.99198

1.16775 0.9729970.23032i 0.99988 0.8979470.22906i 0.92669

Point ‘E’ 1.16782 0.9756970.23297i 1.00311 0.8948670.22903i 0.92371

1.16796 0.9797570.23736i 1.00809 0.8900270.22960i 0.91916
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The following bifurcations near the internal resonance region ‘E–F’ can be observed as the excitation frequency
ratio sweeps from points ‘E’ to ‘F’: periodic-quasi-periodic-chaotic-periodic-quasi-periodic-periodic. As the
excitation frequency ratio decreases from point ‘F’, the system response results in a sequence of periodic-quasi-periodic
or chaotic -periodic vibrations.

5.2. The case of O near o2

When the excitation frequency, O, is near the second natural frequency, o2, one should assume a zero value of f1 and a
nonzero value of f2 in Eq. (26). Let t=Ot=3t1, where t1Eo1t. The solutions of q1 and q2 in this case can be taken as

qj ¼
Xnc

k ¼ 1

ajk cosð2k�1Þt1þ
Xns

k ¼ 1

bjk sinð2k�1Þt1, j¼ 1,2 (29)

We again take nc=ns=8, and the assumed solutions are simplified to be

q1 ¼ A11 cos1
3ðtþf11ÞþA12 cosðtþf12Þþ � � � , (30)

q2 ¼ A21 cos1
3ðtþf21ÞþA22 cosðtþf22Þþ � � � (31)
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where

Ajk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

jkþb2
jk

q
, fjk ¼ tan�1ð�bjk=ajkÞ, j¼ 1,2, k¼ 1,2,. . .,8,

There are two branches of solutions corresponding to Eqs. (30) and (31), which are A11=A21=0, and A11a0 and A21a0.
Figs. 9(a), (b), and (c) show the frequency-response curves for X=o2 � A11, X=o2 � A22ðA11a0Þ and X=o2 � A22ðA11 ¼ 0Þ,
respectively, with f2=0.0055 and m11=m22=0.04. One of the branches of the solution is A11=A21=0, as shown in Fig. 9(c), and
the resulting oscillation in this case consists of only the second harmonic term in which the excitation frequency, O, is
equal to the response frequency; i.e., the system response is in fundamental resonance with O near o2. The characteristic
of A22 is similar to that of the single Duffing system that expresses the jump phenomena; however, internal resonance does
not occur here. The other branch of the solution is the curve in which A11a0 and A21a0, as shown in Figs. 9(a, b), and the
oscillation contains oscillatory components with frequency O/3. It is found that the amplitude A11 is greater than
amplitude A22 in most response regions. In other words, the system response is dominated by the first harmonic terms
where the frequency is one-third of the excitation frequency, O. Hence, these resonance are called subharmonic resonances
which are expressed by X=o2 � A11 and X=o2 � A22.

In Figs. 9(a, b), the subharmonic resonances, frequency-response curves acquired using the IHB method solutions, are
similar to those for non-gyroscopic systems with cubic nonlinearities obtained in literature [24]. The system response
curves are complex loops consisted of three stable portions, which compare very well with the steady solution obtained
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from numerical integration. The first stable solution is generated at a saddle-node bifurcation point ‘A’ (X=o2 ¼ 1:0224),
and loses its stability at the other saddle-node bifurcation point ‘B’ (X=o2 ¼ 1:0816). The second stable solution is
generated at a saddle-node bifurcation point ‘C’ (X=o2 ¼ 1:0234), and it loses its stability via a Hopf bifurcation point ‘D’
(X=o2 ¼ 1:0306). The third stable solution is generated via a Hopf bifurcation point ‘E’ (X=o2 ¼ 1:1746) and loses its
stability at a saddle-node bifurcation ‘F’ (X=o2 ¼ 1:2280).

As the excitation frequency ratio, O/o2, decreases from point ‘E’ to 1.1648, there exists quasi-periodic vibration. Fig. 10
shows the time histories, Fourier spectra, phase plane diagrams and Poincaré sections for the excitation frequency ratio at
X=o2 ¼ 1:1694, obtained from numerical integration. It is also shown that the beating phenomena occur in Figs. 10(a, b),
and energy is continuously being exchanged between the two modes. For X=o2 ¼ 1:1694, the Fourier spectra consist of
discrete components, phase plane portraits are banded attractors and Poincaré sections are closed curves, as shown in
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Figs. 10(c–h). The largest Lyapunov exponents computed for the region from point ‘E’ to 1.1648 are very small values,
which can be taken to be zero for quasi-periodic vibration. As the excitation frequency ratio decreases slightly near 1.1648,
the system response moves away from the quasi-periodic response and jumps to a stable periodic response. Fig. 11 shows
the time history at X=o2 ¼ 1:1646. The amplitudes of the first and second modes (q1 and q2) drop for a finite period of time
and then jumps to a stable periodic response of the second fundamental resonance.
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A quasi-periodic response bifurcates into a chaotic response when O/o2 increases from the Hopf bifurcation point ‘D’ to
1.0337. The stable response loses its stability via the Hopf bifurcation point ‘D’ and becomes a quasi-periodic vibration, as
shown in Fig. 12(a). Then, the quasi-periodic vibration undergoes a sequence of period doubling bifurcations, as shown in
Fig. 12(b) and (c), eventually resulting in chaotic vibration. The chaotic attractor is observed in Fig. 12(d), and the Lyapunov
exponents computed for these parameter values are 0.00763, 5.24621�10�5, �0.03647 and �0.05127. The largest
Lyapunov exponent is positive, confirming its chaotic nature. As the excitation frequency ratio increases slightly near the
boundary crises, the system response moves away from the chaotic attractor and jumps to a stable periodic response of the
second fundamental resonance. In Fig. 13, we show the time history at X=o2 ¼ 1:0341. The two modes, q1 and q2, jump
from a quasi-periodic vibration to a stable periodic vibration after a finite period of time, and the main response frequency
of the first two modes, q1 and q2, change from o2/3 to o2.

The following bifurcations near the internal resonance region ‘E–F’ can be observed with a sweep of the excitation
frequency ratio from point ‘E’ to point ‘F’: periodic-quasi-periodic-chaotic-periodic vibrations. As the excitation
frequency ratio decreases from point ‘F’, the system response results in a sequence of periodic-quasi-periodic-periodic
vibrations.
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6. Conclusions

The transverse nonlinear steady-state vibrations of the axially moving beam with a three-to-one internal resonance
between the first two modes, subjected to a harmonic excitation, have been investigated using the IHB method.
The Floquet theory was used to analyze the stability of periodic solutions and help determine the bifurcation points. The
characteristics of quasi-periodic or chaotic response in terms of the time histories, phase plane plots, Pioncaré sections,
Fourier spectra and Lyapunov exponents were treated numerically.

The periodic solutions, including fundamental resonance and subharmonic resonance obtained from the IHB method,
match very well with the numerically integrated solutions. The response curves of the axially moving beam show
hardening-spring nonlinear characteristics. For fundamental resonances of the first and second modes, the response curves
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are similar to a single Duffing system, while for subharmonic resonance of the second mode, the response curve is in a
closed form.

When the excitation frequency, O, is close to the first two natural frequencies, o1 and o2, quasi-periodic and chaotic
responses are found in some regions in which the energy is continuously being exchanged between the two modes. By
sweeping the excitation frequency, the axially moving beam vibrations possess complex vibrations including jump
responses and the coexistence of multiple attractors, quasi-periodic to chaotic attractors and boundary crisis.
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